
www.manaraa.com

[26] Mark S. Miller, Daniel G. Bobrow, Eric Dean Tribble, and Jacob Levy. Logical secrets. In Ehud Shapiro,

editor, Concurrent Prolog: Collected Papers. MIT Press, Cambridge, MA, 1987.

[27] Mark S. Miller and K. Eric Drexler. Markets and computation: Agoric open systems. In B. A. Huberman,

editor, The Ecology of Computation, pages 133{176. North-Holland, Amsterdam, 1988.

[28] Matt W. Mutka and Miron Levy. Scheduling remote processing capacity in a workstation-processor

bank network. In International Conference on Distributed Computer Systems, pages 2{9. IEEE, 1987.

[29] Joseph Carlo Pasquale. Intelligent Decentralized Control in Large Distributed Computer Systems. PhD

thesis, University of California, Berkeley, April 1988.

[30] James L. Peterson and Abraham Silberschatz. Operating Systems Concepts. Addison-Wesley, Reading,

MA, 2nd edition, 1985.

[31] John F. Shoch and Jon A. Hupp. The \Worm" programs { Early experience with a distributed com-

putation. Communications of the ACM, 25(3):172{180, March 1982.

[32] Reid G. Smith. The Contract Net protocol: High-level communication and control in a distributed

problem solver. IEEE Transactions on Computers, C-29(12), December 1980.

[33] I. M. Sobol. The Monte Carlo Method. Mir Publishers, Moscow, 1975.

[34] I. E. Sutherland. A futures market in computer time. Communications of the ACM, 11(6):449{451,

June 1968.

[35] Andrew S. Tanenbaum and Robert Van Renesse. Distributed operating systems. ACM Computing

Surveys, 17(4):419{470, December 1985.

[36] Daniel G. Theriault. Issues in the design and implementation of Act 2. Technical report, MIT AI

Laboratory AI-TR-728, 1983.

[37] Carl A. Waldspurger. A distributed computational economy for utilizing idle resources. Master's thesis,

Massachusetts Institute of Technology, May 1989.

[38] Carl A. Waldspurger. Priority Flow: A framework for abstract, adaptive resource management. MIT

LCS Parallel Software Group, Internal Memo (unpublished), May 1990.

32

www.manaraa.com

[13] Carl Hewitt. The challenge of open systems. Byte, 10:223{242, April 1985.

[14] Bernardo A. Huberman and Tad Hogg. The behavior of computational ecologies. In B. A. Huberman,

editor, The Ecology of Computation, pages 77{115. North-Holland, Amsterdam, 1988.

[15] Kenneth M. Kahn and Mark S. Miller. Language design and open systems. In Bernardo A. Huberman,

editor, The Ecology of Computation, pages 291{313. North-Holland, Amsterdam, 1988.

[16] Kenneth M. Kahn and Vijay A. Saraswat. Money as a concurrent logic program. Technical report,

Xerox PARC, 1989.

[17] Je�rey O. Kephart, Tad Hogg, and Bernardo A. Huberman. Dynamics of computational ecosystems.

Physical Review A, 40:404{421, 1989.

[18] Douglas B. Lenat. The role of heuristics in learning by discovery: Three case studies. In R. S. Michalski

et. al., editor, Machine Learning: An Arti�cial Intelligence Approach, pages 243{306. Tioga, Palo Alto,

CA, 1983.

[19] Barbara Liskov and Robert Schei
er. Guardians and actions: Linguistic support for robust, distributed

programs. ACM Transactions on Programming Languages and Systems, 5(3):381{404, July 1983.

[20] Michael J. Litzkow, Miron Levy, and Matt W. Mutka. Condor { A hunter of idle workstations. In

International Conference on Distributed Computer Systems, pages 104{111. IEEE, 1988.

[21] Virginia M. Lo. Heuristic algorithms for task assignment in distributed systems. In International

Conference on Distributed Computing Systems, pages 30{39. IEEE, 1984.

[22] Virginia M. Lo and David Chen. Intelligent scheduling in distributed computing systems. Technical

Report CIS-86-14, Dept. of Computer and Information Science, University of Oregon, April 1987.

[23] E. Lumer and B.A. Huberman. Dynamics of resource allocation in distributed systems. Technical

report, Xerox Palo Alto Research Center, March 1990.

[24] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard. Enterprise: A market-like task scheduler

for distributed computing environments. In B. A. Huberman, editor, The Ecology of Computation, pages

177{205. North-Holland, Amsterdam, 1988.

[25] Carl R. Manning. Acore: An actor core language. MPSG Apiary Design Note 7, MIT AI Laboratory,

August 1987.

31

www.manaraa.com

References

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge,

MA, 1986.

[2] A. Barak and A. Shiloh. A distributed load-balancing policy for a multicomputer. Software Practice

and Experience, pages 901{913, September 1985.

[3] T. C. K. Chow and J. A. Abraham. Load balancing in distributed systems. IEEE Transactions on

Software Engineering, pages 401{412, July 1982.

[4] Edward G. Co�man and Peter J. Denning. Operating Systems Theory. Prentice Hall, Englewood Cli�s,

NJ, 1973.

[5] Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed problem solving. Arti�cial

Intelligence, 20:63{109, 1983.

[6] K. Eric Drexler and Mark S. Miller. Incentive engineering for computational resource management.

In B. A. Huberman, editor, The Ecology of Computation, pages 231{266. North-Holland, Amsterdam,

1988.

[7] Alex Dupuy. Network Simulation Tested (nest) User Manual. Technical Report CS-NEST, Columbia

University, Computer Science Department, 1986.

[8] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale University, February 1985.

YALEU/DCS/RR-364.

[9] Richard Engelbrecht-Wiggans, Martin Shubik, and Robert M. Stark. Auctions, Bidding, and Contract-

ing: Uses and Theory. New York University Press, New York, NY, 1983.

[10] Donald Ferguson, Yechiam Yemini, and Christos Nikolaou. Microeconomic algorithms for load balancing

in distributed computer systems. In International Conference on Distributed Computer Systems, pages

491{499. IEEE, 1988.

[11] Daniel Friedman. On the e�ciency of experimental double auction markets. American Economic Review,

24(1):60{72, March 1984.

[12] Max Hailperin. Load balancing for massively-parallel soft-real-time systems. Knowledge Systems Lab-

oratory Report KSL-88-62, Dept. of Computer Science, Stanford University, August 1988.

30

www.manaraa.com

automated tools to assist in the development of novel funding algorithms. For example, software similar to

a \trace scheduler" [8] capable of monitoring dynamic resource usage patterns in a concurrent computation

may prove valuable for improving or evolving funding strategies for a given application. The applicability

and interaction of techniques such as static program analysis and adaptive algorithms in the context of

market-based resource allocation remains an open question.

A �nal area for further study is diversity in computational economies. Although we have focused on the

purchase of processor time, we should point out that the price mechanism can allow machines with di�erent

capabilities (
oating point hardware, large disc space, direct access to special databases or proprietary

algorithms, etc.) to have di�erent values. Thus, tasks can
exibly devote their currency to the resources most

important to them. Such a scenario would bring Spawn into greater correspondence with a real economy, in

which there is a multitude of di�erent goods. By the same token, the market mechanism supports a deeper

symmetry than studied here, in which computational results obtained by agents can themselves become

marketable goods of potential use to other agents [27]. In this way, one can envision a more cooperative

collection of processes, which, despite their di�erent goals and characteristics, can contribute to each other's

performance.

29

www.manaraa.com

6 Conclusions

6.1 Summary of Present Work

We have described the architecture, implementation, and testing of Spawn, a distributed computational

system that shares many properties with human markets and auctions. Spawn addresses the problems of

resource contention, fair dynamic load sharing, resource management for concurrent computations, and the

notion of priority in distributed systems. As the experiments show, the system can successfully handle these

problems without resorting to global controls.

As a practical system, Spawn e�ciently harnesses otherwise-wasted idle time in a distributed network

of heterogeneous workstations. Thus, distributed computations competing for resources can be e�ciently

managed with acceptable overhead. This allows certain classes of large, easily-parallelized computations that

are commonly run on supercomputers to execute on existing, underutilized networks.

In addition to its successful performance, Spawn has enabled many quantitative experiments that probe

the dynamics of real computational markets. In particular, we have found that a small number of agents

can produce an identi�able market, since
uctuations were not able to obscure the stable equilibria in prices.

Moreover, we have observed that monetary funding can be used as an e�ective form of priority in distributed

systems containing heterogeneous nodes. Experiments have also demonstrated that price information can be

used to adaptively control the expansion and contraction of process trees in concurrent applications. Finally,

we have examined problems with auction mechanisms in computational economies, and propose the use of

a simple sharing rule as an alternative.

6.2 Directions for Future Research

As an experimental research tool, Spawn is somewhat fragile and awkward to use. One research area that

warrants considerable attention is the smooth integration of Spawn's mechanisms with a robust language

for parallel and distributed computation. Simple, expressive linguistic mechanisms would facilitate more

rapid advancement by researchers concerned with market-based computational resource management. The

priority
ow framework is directed at ful�lling this need [38]. It facilitates the expression of abstract

resource management schemes in parallel systems, using a low-overhead, �ne-grained market-like substrate.

The priority
ow framework also uses a simple sharing rule in place of auctions to determine prices, and

incorporates a scalable, hierarchical technique for propagating information.

Another area of interest is the speci�cation and implementation of more sophisticated funding strategies

for controlling concurrent computations. Although we have demonstrated the e�ectiveness of a small number

of simple funding strategies, the general topic has been largely unexplored. It may be possible to develop

28

www.manaraa.com

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0 50 100 150

Iteration Step

C
u

m
u

la
ti

ve
 F

ra
ct

io
n

 o
f

W
in

s
Funding = 3

Funding = 1

Funding = 2

Figure 13: Fairness for a Single Iterated Auction

Cumulative fraction of auctions won by each of three tasks with a funding ratio of 3:2:1 in a single

iterated auction. The actual allocation achieved was 3.43:2:1, averaged over the entire run.

coordinate information regarding the preferences and capabilities of all agents, as would be required by a

truly centralized controller.

These observations have prompted us to explore less volatile, low-overhead mechanisms for determining

resource prices. A promising approach was conceived after examining a number of graphs similar to Figures

12 and 13. The basic insight is that the average price in an iterated second-price auction converges to the

sum of the funding rates of all bidders. Instead of relying upon an iterated auction, a resource can be

directly allocated (e.g. time multiplexed at a very �ne granularity) among the tasks competing to use it,

in proportion to their funding rates. This directly achieves fairness while maintaining a stable price for the

resource that is proportional to demand. This type of direct mechanism is at the core of a new market-like

system for allocating resources to �ne-grained tasks in multiprocessors [38].

27

www.manaraa.com

 0

 2

 4

 6

 8

 0 100 200 300 400 500
Iteration Step

P
ri

ce
 (

$)

Figure 12: Price for a Single Iterated Auction

Price as a function of time (iteration step) for a single iterated sealed-bid, second-price auction. Three

bidding tasks were given funding rates of $1, $2, and $3 per auction.

[6], and the state of an individual auction in a Spawn economy receiving bids from tasks with linear funding

rates.

Figure 12 plots the selling price for a series of iterated sealed-bid second-price auctions when there are

three bidders with funding rates of $1, $2, and $3 per auction. The oscillatory price behavior and volatility

are rather striking. Over a su�ciently long time interval, the average price is $6 per auction, with a standard

deviation of $1.14. However, the price continues to oscillate between a low of $3 and a high of $8 per auction,

with most prices falling in the $5 to $7 range. Further experiments indicate that the price
uctuations were

even sensitive to the order in which ties were broken { causing the standard deviation of long runs to vary

between $0.82 and $1.14 per auction.

Another metric that warrants investigation is fairness. Figure 13 shows the fraction of auctions won by

each of the three bidders under the conditions described above. Given enough time, resource allocations

converge near their expected \fair" values. In this case, we expect a ratio of 3:2:1, and we observe an

allocation of 3.43:2.00:1.00. However, over a shorter interval there is considerable volatility in the observed

ratios.

In addition to volatility, auctions exhibit another undesirable property in computational markets. Bidding

requires all interested tasks to explicitly communicate with a resource before any decisions are made; the

resource must then inform all bidders of the acceptance or rejection of their o�ers. The overhead imposed may

be negligible in a distributed system such as Spawn, but becomes increasingly important as the granularity

of tasks decreases. One possibility is to use a more centralized market instead of separate markets on each

machine. This would help buyers and sellers locate one another, yet no single agent would be required to

26

www.manaraa.com

5 Limitations and Lessons

Experience with Spawn has taught us a number of valuable lessons about the design and implementation of

computational markets. In this section, we present some of these lessons and discuss related limitations in

the Spawn system.

5.1 Scaling to Larger Networks

A desirable characteristic of any distributed system is the ability to scale well to large networks. The

experiments and simulation results presented in section 4 indicate that with respect to fairness of resource

distribution and temporal price dynamics, Spawn scales gracefully to large systems. However, in terms of

spatial price dynamics, the scaling results for Spawn are less favorable. This is indicated by Figure 11, and is

also suggested by the need to employ an improved manager strategy to avoid price di�erentials, as described

in section 4.4.

We believe that the underlying cause for the observed spatial price
uctuations and di�erentials is the

limited communication of information permitted in Spawn systems con�gured as a torus with only nearest-

neighbor connections. Nearest-neighbor connections were also used in [10], but since all reported experiments

were performed on a small, nine node simulated system, these problems were not encountered. The constraint

of nearest-neighbor communication limits the rate at which tasks can discover and exploit favorable situations

that exist in distant regions of large networks.

Thus, for improved performance in computational markets, scalable propagation of information is needed.

Several e�ective methods exist that could be used in future systems. One technique is to communicate with

a small number of nodes chosen at random [2]. Another promising option is to propagate information using

a hierarchy of information
ow rates [23].

5.2 Auctions and Bidding

As explained in section 3, Spawn uses a sealed-bid, second-price auction mechanism to determine the price

for a time slice of a processing resource. This type of auction is very e�ective in human markets, and has

been proposed as a resource allocation mechanism in work on computational markets [6, 10]. Nevertheless,

the dynamics of such auctions have not been analyzed carefully.

In this section we examine the dynamical behavior of a single iterated sealed-bid, second-price auction.

In particular, we look at the behavior of such an auction when the bidders increase their bids linearly over

time. This situation is characteristic of the escalator algorithm proposed for single-processor scheduling in

25

www.manaraa.com

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

 0 300 600 900 1200 1500

Time (sec.)

C
u

m
u

la
ti

ve
 R

ev
en

u
e

 S
D

/A
V

Figure 11: Relative Imbalance in Auction Revenues

Relative
uctuations in cumulative auction revenue distributions as a function of time. The vertical

axis measures the ratio of the standard deviation to the average of cumulative revenues across all

auctions. The solid line presents the data for a simulated 16 node system con�gured as a torus. The

dashed line is for a simulated 36 node torus, and the dotted line plots the simulation results for a 64

node torus. In all of the simulations, time slice lengths were 15 seconds, and three concurrent tasks

were executed with a 3:2:1 funding ratio.

The auction revenues are initially very poorly balanced. However, the balance quickly improves over time

until the magnitude of the
uctuations in revenue are reasonably small when compared with the average

revenue. Further experiments indicate that this e�ect remains essentially the same when di�erent times are

chosen as the reference point from which auction revenues are accumulated. This indicates that although

prices may be poorly balanced at any particular instant, the cumulative balance rapidly improves over time.

The time necessary to achieve a reasonable balance increases with network size. For a simulated 16 node

system con�gured as a torus, the
uctuations (as measured by the standard deviation) drop to approximately

13% of the average within 25 auction time slices. A 36 node system requires 30 auction time slices to decrease

uctuations to 18% of the average, and a 64 node system needs 50 time slices for
uctuations of approximately

25%.

24

www.manaraa.com

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

Task added Funding terminated

Figure 10: Market Response to a High Priority Task

Average price as a function of time when a high priority task is injected into a 6 node, fully-connected

system with low-priority jobs. The introduction and termination of the high priority task's funding

are indicated on the time axis.

tasks were running; Figure 10 illustrates the system's response. The experimental market initially consisted

of two tasks continuously funded at rates of $0.01/sec. and $0.02/sec. After the initial transients subsided,

a new task was injected at t = 700 into the market with the substantially higher funding rate of $0.07/sec.

and a �xed total allocation of $50.40.

The high priority task made its �rst successful bid at t = 855, roughly two auction time-slices after

of its creation. It then rapidly took over most of the available resources. From this time until t = 1600,

shortly after its funding terminated at t = 1400, the high priority task captured approximately 60% of the

total system resources. This is in close agreement with the \fair" value of 70%, since the three competing

tasks were funded in a 7:2:1 ratio over that time interval. This con�rms the responsiveness of the system to

sudden changes in demand. Given the previous results on fairness of resource allocation and the fairly short

observed transients, this is not a surprising result.

4.4.5 Auction Revenue Distribution

Our �nal set of Spawn experiments examined the spatial distribution of prices across all of the machines in

a homogeneous system. Since the income earned by an auction captures the price history for a node, we use

the distribution of auction revenue as a measure of spatial equilibrium.

Let R denote the set of cumulative auction revenues. Figure 11 plots the ratio of the standard deviation

of R to its average as a function of time. This illustrates the relative magnitude of
uctuations in auction

revenue over time.

23

www.manaraa.com

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500

Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

Task added

 0 500 1000 1500
Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

 0

 50

 100

 150

 200

 250

 300

Task added
(a) (b)

Figure 9: Market Price Adaptation

Average price as a function of time. In each experiment, two tasks with equal funding initially com-

pete with one another, reaching an equilibrium. Later, at the point indicated on the time axis, a

third task with twice the funding of each original task is added to the system.

(a) Six fully-connected machines. Time slices are 60 seconds; funding is supplied every 10 seconds.

An initial equilibrium price of $0.0033/sec. is reached, and the new task is added at t = 671 sec.

It made its �rst successful bid 75 seconds later. After this point, the price quickly rose to a new

equilibrium value of $0.0067/sec.

(b) Simulated 36 node system con�gured as a torus. Time slices are 15 seconds; funding is supplied

every 5 seconds. An initial equilibrium price of $0.1101/sec. is reached, and the new task is added at

t = 1000 sec. It made its �rst successful bid 8 seconds later. After this point, the price quickly rose

to a new equilibrium value of $0.2196/sec.

Figure 9a shows the resulting average price as a function of time in a fully-connected six node system.

Before the addition of the third task, the observed equilibrium price is close the the theoretical value (i.e., the

rate at which currency enters the system). After introducing the additional task, the average price adjusts

within a few auction cycles to the new equilibrium value, a sign of the adaptability of the system when there

are multiple tasks competing for processing resources. Note that this transient time is the same as when

starting from an initially idle network (compare with Figure 7a).

A similar experiment was repeated for a larger, locally-connected system in a simulation consisting of 36

nodes con�gured as a torus. Figure 9b shows the resulting average price as a function of time.

4.4.4 High Priority Tasks

Systems that schedule tasks according to �xed priorities enable high-priority tasks to run immediately.

Spawn's market mechanisms can also give some tasks high priority, where higher funding corresponds to a

higher priority. To demonstrate this, we introduced a high-priority task into a system in which low-priority

22

www.manaraa.com

 0

 2

 4

 6

 0 500 1000 1500
Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

Sun 4/260 Average

Sun 4/110 Average

Figure 8: Price Di�erential in a Heterogeneous System

Price di�erentials in a nine node inhomogeneous system con�gured as a torus. The length of each

time slice is 60 sec. Each of four roots is funded with $0.10 every 10 seconds. The solid line shows the

average price for six Sun4/110's; the dashed line indicates the price averaged over three Sun4/260's.

The observed price ratio for the di�erent types of machines is close to their relative worth to the

applications.

and 7c. The ability to balance prices merely by changing an application's funding strategy illustrates the

exibility of the market mechanism. However, it can be argued that a more elegant solution would be to use

nonlocal communications to initially distribute tasks more uniformly than was possible with nearest-neighbor

connections in a logical torus topology. This issue will be discussed in section 5.

4.4.2 Price Di�erentials in Heterogeneous Systems

When the machines in the network are not homogeneous, price di�erentials develop between machines that

re
ect their relative values to applications. Figure 8 shows the prices in a system with 9 locally-connected

auctions con�gured as a torus: 3 running on Sun4/260's and 6 on Sun4/110's. The applications hold a

Sun4/260 to be 1.4 times a valuable as a Sun4/110. The factor of 1.4 is based entirely on the relative speed

of the machines for the given application. Once the average prices reach equilibrium, they di�er by a factor

within 20% of 1.4: $0.0032/sec. for the 110's and $0.0053/sec. for the 260's.

4.4.3 Transients

In addition to displaying meaningful prices, the system should adapt to changes in demand. In order to

determine how long it takes the average price to stabilize after a new task is added to the system, we �rst

introduced two concurrent Monte-Carlo tasks, waited for the establishment of an equilibrium, and then

injected a third task into the system.

21

www.manaraa.com

 0

 50

 100

 150

 200

 250

 0 750 1500 2250

Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500

Time (sec.)

P
ri

ce
 (

$/
se

c.
)

x
10

00

(a) (b)

(c)

Figure 7: Price Equilibrium

Average price as a function of time. In each experiment, there are three concurrent tasks, with a

funding ratio of 3:2:1.

(a) Six fully-connected machines. Time slices are 60 seconds; funding is supplied every 10 seconds.

Tasks declined extensions and funded children equally. The total rate at which money enters the

system is $0.06/sec. Measuring the average price between t = 400 and t = 1200 sec., we �nd that the

average price = $0.0098/sec., with standard deviation $0.0013/sec.

(b) Twelve locally-connected machines con�gured as a torus. Time slices are 60 seconds; funding

is supplied every 10 seconds. Tasks accepted extensions and funded their two most cost-e�ective

children. The total rate at which money enters the system is $0.06/sec. Measuring the average price

between t = 400 and t = 1600 sec., we �nd that the average price = $0.00487/sec., with a standard

deviation of $0.0007/sec.

(c) Simulated 64 node system con�gured as a torus. Time slices are 15 seconds; funding is supplied

every 5 seconds. Tasks accepted extensions and funded their two most cost-e�ective children. The

total rate at which money enters the system is $12/sec. Measuring the average price between t = 150

and t = 2250 sec., we �nd that the average price = $0.1879/sec., with a standard deviation of

$0.0266/sec.

20

www.manaraa.com

4.4 Market Dynamics

Since Spawn uses currency as its basic mechanism for resource allocation, we are interested in how close

it comes to behaving like a market. Can a meaningful market price for processor time be established and

sustained, even when relatively few machines and tasks are involved? If such a price can be established, does

it respond in a reasonable and timely way to changes in the numbers of buyers and sellers? In this section,

we investigate the existence of equilibrium prices, temporal and spatial
uctuations, and transients. We also

examine the e�ects of heterogeneous machines on prices in Spawn's computational economy.

4.4.1 Equilibrium

The simplest case that we consider involves a fully-connected network of homogeneous machines (i.e., each

machine is valued equally by the tasks). Each task placed a bid on the auction which was slated to �nish �rst,

and bid elsewhere only upon receiving a rejection notice. Each manager tried to spawn two submanagers,

which were funded equally. Figure 7a shows how the price, averaged over all machines, changed as a function

of time. As can be seen, a reasonable equilibrium was reached in the sense that the temporal
uctuations

were small compared to the average. In equilibrium, the total rate at which currency enters the system

(here $0.06/sec.) ought to equal the rate at which the auctions collect revenue. Since there are six auctions,

we expect the average price to be $0.01/sec., which matches the measured average. The
uctuations in the

average price (the standard deviation measured from t = 400 to t = 1200) were approximately 13%. A closer

analysis also revealed that, within each of the six auctions, the
uctuations are in the vicinity of 25%.

Next we examined the behavior when the network was less densely connected, a characteristic of larger

networks. When machines had few connections to one another, employing the simple equal-funding strategy

used in the fully-connected case led to a signi�cant di�erence in prices among the machines. Such price

di�erences resulted when relatively wealthy tasks (close to the root managers of their sponsorship hierarchies)

were spawned near one another, and their relatively poorer subtasks (deeper in the sponsorship hierarchies)

also happened to be spawned near one another. Where there is a persistent price di�erence across machines,

clever managers should be able to take advantage of the situation by spending their money on the less

expensive ones. If several clever managers compete against one another, we would then expect the price

di�erentials to disappear as the prices on the less expensive machines are bid up by the smart managers

looking for a bargain.

To address the problem of price di�erentials, a slightly more sophisticated funding strategy was employed.

Instead of funding each child equally, only those children running on the cheapest few machines were given

the funding. This strategy eliminated the price di�erence; the resulting behavior is shown in Figures 7b

19

www.manaraa.com

Time Allocation

Funding Ratio 16 Node Torus 36 Node Torus 64 Node Torus

1:1:1 1.15:1.06:1 1.06:1.04:1 1.08:1.04:1

3:2:1 2.89:1.84:1 2.89:1.75:1 2.95:1.77:1

10:5:1 9.46:4.22:1 12.11:4.68:1 8.18:3.34:1

Figure 5: Fairness In Larger Systems

Fairness of simulated Spawn system for various funding ratios among applications. All experimental

runs were simulated using 15 sec. time slices. The simulated run lengths were approximately 40

minutes. In all simulations, each machine was connected to four others in a regular grid to form a

torus. Tasks accepted extensions and funded their two most cost-e�ective children.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500

Time (sec.)

R
es

ou
rc

e
U

sa
ge

 (
m

ac
hi

ne
s)

Funding = 3

Funding = 2

Funding = 1

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500

Time (sec.)

R
es

ou
rc

e
U

sa
ge

 (
m

ac
hi

ne
s)

Funding = 10

Funding = 5

Funding = 1

(a) (b)

Figure 6: Continuous Fairness

Resource usage for three concurrent tasks in two simulated systems. The number of machines inhab-

ited by each of the three tasks is plotted as a function of time. (a) Tasks were funded with a funding

ratio of 10:5:1 in a 36 node system con�gured as a torus. The actual resource usage was observed to

be 12.11:4.68:1, averaged over the entire run. (b) Tasks were funded with a funding ratio of 3:2:1 in

a 64 node system con�gured as a torus. The actual resource usage was observed to be 2.95:1.77:1,

averaged over the entire run.

each application is able to obtain a share of system resources that is close to its share of total system funding.

As we can see from the tables, the auction mechanism allocates time in a manner that is reasonably close

to the funding ratio in all runs. Moreover, this fairness of allocation is usually observed throughout the

entire run. Figure 6 presents representative simulation runs which demonstrate that a reasonable degree

of fairness is continuously maintained, even in large systems. We thus expect a proper response in more

complex situations; for example, when tasks are continuously entering and leaving the system, or when tasks

are funded dynamically based upon partial results. An example of this latter case is an application which

provides tasks with most of their funds near the beginning of a computation to obtain a rough estimate,

then pays less for further accuracy, as can be appropriate in Monte-Carlo calculations.

18

www.manaraa.com

6 Nodes, Fully Connected

Funding Ratio Time Allocation

1:1 1.04:1

2:1 1.85:1

10:1 12.36:1

3:2:1 2.79:2.00:1

12 Node Torus

Funding Ratio Time Allocation

1:1:1 1.01:1.00:1

2:1 2.92:1

3:2:1 3.50:2.37:1

Figure 4: Fairness of Resource Allocation

Fairness of Spawn for various funding ratios among applications. All experimental runs were performed

on Sun4/110's using 60 sec. time slices. The runs lasted between 20 and 30 minutes. The �rst set

compares the allocated time to the funding ratio for six fully-connected machines. In these runs, the

tasks declined extensions and children were funded equally. The second set is for twelve machines each

connected to four others in a regular grid to form a torus. In this case the tasks accepted extensions

and funded their two most cost-e�ective children.

4.3 Fairness of Resource Distribution

Conventional operating systems often employ a simple notion of priority in scheduling processes. A process

with high priority is given absolute precedence over a process with lower priority, and the use of a processor

is granted to the highest priority process that tries to obtain it. The ability to express priorities for processes

a�ords programmers some measure of control over the management of computational resources. However,

the conventional conception of priority in sequential systems does not scale well to concurrent and distributed

systems. In fact, the very notion of priority is not well-de�ned for distributed systems, especially if these

systems are composed of heterogeneous machines.

In Spawn, monetary funds abstractly encapsulate relative resource rights, and are analogous to priority.

Funding units are abstract since they are completely independent of machine details. They are also relative,

since the amount of a resource to which a task with a given amount of funding is entitled varies dynamically

in proportion to the contention for that resource. This property permits concurrent Spawn applications to

adaptively expand into more machines when prices are low, and forces them to contract into fewer machines

when prices are high. Through our experiments, we have found that the use of funding as priority is highly

e�ective, even in decentralized systems.

In order to test the distribution of resources when there are competing tasks executing in Spawn, we

measured the resource utilization with multiple competing versions of the concurrent Monte-Carlo applica-

tion, given various top-level funding ratios. Each application spawned a tree of subtasks, and each subtask

simply bid all of its available funding on the auction with the earliest available next time-slice.

The results for a number of representative examples executed on the actual Spawn system are summarized

in Figure 4. Simulation results for larger systems are tabulated in Figure 5. The funding ratio columns specify

the relative top-level funding rates given to applications. Similarly, the time allocation columns indicate the

relative amount of processing time obtained by each application. A fair resource distribution is one in which

17

www.manaraa.com

 0

20000

40000

60000

80000

100000

20000 40000 60000 80000 100000

Trials / sec. (Ideal)

T
ri

al
s

/ s
ec

.
(S

p
aw

n
)

Figure 3: Basic Spawn E�ciency

Number of Monte-Carlo trials/sec. calculated by Spawn vs. ideal number of trials/sec. that could be

performed concurrently on independent machines, for 1 to 9 machines. The time slices were all 60

seconds. The best linear �t indicates that Spawn operates with 89.7% e�ciency (i.e. 10.3% overhead)

for this particular task and granularity. When the time slices are doubled to 120 seconds, the overhead

drops to 7.6%.

4.2 Use of Idle Machines

Our �rst experiment measured the e�ciency with which idle machines are used in Spawn. To do this, we

introduced one concurrent Monte-Carlo task into a network of otherwise idle machines. As this task executed,

it quickly spawned subtasks into all of the available machines. Each application manager tried to spawn two

submanagers and did not ask for extensions.

We then measured the number of Monte-Carlo trials executed per second as a function of the number

of machines in the network. Figure 3 shows the resultant speeds compared to those which could have been

ideally obtained by running independent serial Monte-Carlo tasks (containing no Spawn-related code) on the

same set of machines.

Because of the negligible communication overhead in the Monte-Carlo application, we observe a linear

relationship; the slope of approximately 0.9 essentially characterizes the e�ciency of the Spawn system.

Further experiments indicated that the bulk of the measured overhead could be attributed to extensive

logging of runtime diagnostics, and the use of a single �le-server from which executable �les were loaded.

Despite these in
uences and the need for optimizations, we were satis�ed that an overhead of approximately

10% was adequate for our experimental purposes.

16

www.manaraa.com

4 Experiments

4.1 Overview

In order to evaluate the Spawn system, we have conducted a number of experiments which served to quantify

its ability to make use of idle machines, distribute resources among competing tasks, and respond to a

changing environment. These experiments were based on asynchronous Monte-Carlo applications executing

concurrently in a distributed network.

Monte-Carlo is a probabilistic algorithm that computes average properties of systems [33]. It consists

of a large number of independent trials of a system, each in a di�erent con�guration. The desired average

is then computed over the ensemble of these independent trials. Since errors in the computed averages are

inversely proportional to the square root of the number of trials, accurate results require a large number

of trials. This technique has been successfully employed in wide spectrum of applications, including the

numerical evaluation of integrals, determining the behavior of complicated states of matter, and exploring

interactions in ecosystems and economics.

The Monte-Carlo algorithm was ideal for our purposes. It is paradigmatic of simulation techniques

requiring great amounts of CPU time, and it easily decomposes into an arbitrary number of subtasks, each

performing a number of independent trials. By experimenting with simple Monte-Carlo applications, we

were able to meaningfully explore microeconomic approaches for managing concurrent applications without

making our experiments too complex and cumbersome to analyze.

The data presented in this section is derived from two separate sources: a working implementation of

Spawn in a network of Sun workstations, and a detailed Spawn simulator based on the NEST simulation

engine for distributed systems [7]. Simulation results are primarily used to establish the scaling properties

of the system. Each experiment is labelled with the relevant data source and conditions under which the

experiment was conducted. Typical logical interconnection topologies used in the experiments include small,

fully-connected systems, and larger systems in which each node is locally connected to four others in a regular

grid to form a torus.

We �rst study the utilization of idle machines and overhead associated with the Spawn. We then examine

the use of funding as a priority mechanism, and investigate the resulting fairness of resource distribution. Fi-

nally, we explore the temporal and spatial dynamics of prices and funding, examining
uctuations, equilibria,

and transients.

15

www.manaraa.com

3.5 Implementation

Spawn runs on a network of heterogeneous Unix workstations. The protection mechanisms o�ered by modern

workstations (e.g., separate, per-process memory address spaces and other support for multi-processing)

obviate many technical di�culties that plagued prior implementations of related systems such as Enterprise

[24] andWorms [31]. A network of Unix workstations provides a minimal substrate upon which Spawn can be

successfully implemented. Ideally, we would have preferred to take advantage of a sophisticated distributed

operating system and a programming language designed for open systems [35, 15, 19, 25]. Unfortunately,

these tools were neither generally nor uniformly available on the existing machines and networks that we

used; many are still research prototypes. Spawn is written in the C programming language and utilizes the

Sun RPC and NFS protocols for networked computing. Spawn has been successfully tested on networks

containing Unix workstations manufactured by Sun Microsystems (Sun 3, Sun 4) and Digital Equipment

Corporation (VAX family).

At the computational level, all Spawn processes communicate via an asynchronous message-passing pro-

tocol. Since processes may be short-lived (by design or due to lack of funds), Spawn provides a facility for

dynamic re-routing of messages and a mechanism for the delegation of responsibility. Before terminating,

an application manager may delegate responsibility for its children to any other manager in the sponsorship

hierarchy; typically it will delegate to its own immediate sponsor. Additional implementation details can be

found in [37].

Our computing environment imposed several limitations on the scope of the Spawn project. Since Spawn

executes as an ordinary user-mode Unix application, process creation is an expensive operation, and processes

are unable to migrate between machines. This limits us to very coarse-grained processes. Because we were

not able to use a programming language designed for robust concurrent and distributed computation, we

decided to limit the scope of our applications to those that could be easily parallelized and expressed using

extensions to existing serial languages (such as C and FORTRAN).

There are two additional shortcomings in the present Spawn implementation. First, Spawn does not

provide applications with robust recovery in the event of failure. User computations can be aborted due to

machine failure or insu�cient funding; it is currently the responsibility of applications to recover from such

failures. A better solution would be for Spawn to utilize a substrate for reliable distributed computation

that provides robust recovery from failure by using atomic transactions [19]. Second, Spawn is not secure.

Although reasonable safeguards and checks have been included, no attempt has been made to protect the

Spawn economy from malicious users intent upon forging currency or deliberately cheating agents [26, 16].

14

www.manaraa.com

APPLICATION MANAGER

RESERVOIR

SPONSOR

CONTROLS

SUBTASK FUNDING

Figure 2: Spawn Sponsorship Hierarchy

An application's sponsor continually gives funds to its child tasks. The relative funding rates among

child tasks are controlled by the application manager.

managers are free to allocate their incoming funding in any manner, they can neither create nor destroy

funds. This conservation of funding property holds at all branch points in the application process tree.

The top-level manager for a computation controls the total amount of funding that is pumped into the

root of the sponsorship hierarchy. Since funding cannot really be continuous, the root node delivers it in

discrete drops, which split into �ner drops at branch points. The
ow of funds is illustrated in Figure 2.

For example, consider a homogeneous task that can spawn a large number of similar subtasks. A simple,

e�ective manager strategy is to fund each child equally. Because the overall application can be viewed as

a tree of managers with a branching factor greater than one, it is clear that funds introduced by the root

manager will be subdivided and ultimately delivered to the leaves of the management tree. Since each leaf

is actively bidding to spawn additional tasks, the distributed computation will be able to expand to more

machines when prices are low and will be forced to shrink back to fewer machines when the market is not

as favorable. A more intelligent manager could decide to heavily fund the most cost-e�ective or productive

children.

At the highest level, the allocation of funding to users is negotiated by human system administrators.

Some users may be able to earn the funds they spend by selling unused time on their personal workstations.

Users with processing requirements that far exceed their earning potentials can be granted funding income

rates that re
ect their relative importance or need for resources.

13

www.manaraa.com

auction processes.

Application tasks can easily send application-speci�c (i.e., opaque to the Spawn system) messages to their

parent managers. Managers receiving messages from children can combine the information they contain to

deliver aggregate reports to higher management. Of course this feature need not be used; for example, black

box tasks never send messages to their managers.

3.4 Sponsors and Funding

A key issue that Spawn confronted was the development of a general mechanism for funding distributed

computations. This problem is very di�erent from that of scheduling independent tasks, since our primary

concern is instead with the fair execution of concurrent, tree-structured computations.

The concept of sponsored computations was developed by researchers investigating linguistic constructs

for the allocation of resources in actor programming systems [36, 1]. The most recent actor language,

Acore [25], employs sponsors to control the rate at which concurrent threads of computation proceed. In

Acore, every transaction (i.e., message-send and reply) in an actor computation must be sponsored. When

a transaction is run, the runtime system requests an allocation of ticks from its sponsor. A tick is the basic

unit of computational resource, and represents the resources required to perform a single message-send. A

sponsor may either grant a number of ticks, or deny further funding, in which case the transaction's thread

is aborted. In practice, Acore sponsors have primarily been used to deny funding to unwanted computations.

More sophisticated sponsor strategies are di�cult to reason about, since ticks are not sensitive to dynamic

resource utilization information, and always represent the same quantity of resources.

Spawn extends and re�nes the notion of sponsorship in the context of a market-based computational

economy. In Spawn, managers serve as funding sponsors for their children, dynamically controlling the

relative fraction of funding allocated to each child task. Relative allocation of funds provides a clean high-

level framework for sponsorship by removing low-level details, such as absolute funding amounts and the need

for complex funding request and evaluation protocols. A simple manager strategy allocates equal amounts

of funding to each child; more sophisticated strategies may take the relative workloads, progress, or cost-

e�ectiveness of each child into account. In this way, Spawn provides basic support for the use of heuristics

similar to the \interestingness" metric employed by Eurisko [18] for guiding exploratory computations.

The Spawn sponsorship hierarchy can be visualized as a tree of pipes, in which funds
ow from the root

node of an application to its managers. Each manager corresponds to a branch point in the tree consisting

of a single input pipe, a reservoir, and a variable-width output pipe for each of its children. To control

the relative amount of funding
owing to individual children and the amount of funding retained for its

own future use, a manager can adjust the widths of its output pipes and the size of its reservoir. Although

12

www.manaraa.com

APPLICATION SUBTASK

TOP-LEVEL APPLICATION

APPLICATION SUBSUBTASK APPLICATION SUBSUBTASK

APPLICATION SUBTASK

USER INTERFACE
ROOT

WM

WM

WMWM

COMBINING

Figure 1: Application Process Hierarchy

Workers (W) report to their local managers (M), who in turn make reports to the next higher level of

management. Upper management combines data into aggregate reports. Finally, the root manager

presents results to the user.

To create a local worker process, an application manager sends a spawn-worker message to its local

resource manager. This message contains an abstract task name and a list of task arguments. The abstract

task name provides a level of indirection that facilitates the execution of tasks in a heterogeneous computing

environment. A task name refers to a set of mappings, speci�ed in a task �le, which map particular work-

station con�gurations onto network pathnames for the executable �les that implement the named task for

that con�guration. A task �le also de�nes application-speci�c ratings for each possible con�guration. This

information enables applications to specify the relative e�ciency of executing a task on di�erent hardware

con�gurations, and is used by the resource manager to �nd the best match between a task and the resources

for sale in the current market.

To create a remote manager for processing a subtask, an application manager sends a spawn-manager

message to the resource manager. This message contains the information carried by the spawn-worker

message, as well as several parameters that the resource manager needs in order to �nd resources for the

task's execution. These include the estimated processing time for the task (normalized to a machine with an

application-speci�c rating of unity), and a speci�cation of the relative importance of time versus price, similar

to the metric used in [10]. An application manager may avoid the introduction of unwanted competition (e.g.,

between two cooperating subtasks) by specifying user and group identi�cations that should be considered

\friendly" when bidding on time for new subtasks. Such tasks are not considered to be competitors by

11

www.manaraa.com

low-level market mechanisms that locate, schedule, and purchase the resources necessary for its execution.

At the same time, however, it should be possible for an application to exert some control over the general

allocation of funds to allow for interesting strategies. The Spawn architecture provides a uniform mechanism

with these capabilities.

Application processes, which will be described in more detail in the next section, simply provide high-

level funding information for their subtasks. The resource manager encapsulates details about auctions and

bidding procedures, and communicates with a set of nearby auctions. Each resource manager maintains a list

of \neighboring auctions" which supply price and availability information. This list is easily modi�ed, and

has allowed us to experiment with a variety of logical interconnection topologies. Normally each machine is

only connected to a small number of other machines, demanding highly decentralized decision-making with

no global state or controls.

3.3 Application Processes

Applications are divided into manager and worker modules. An application worker is the primary compu-

tational task for which resources are allocated. Each worker has a corresponding manager process to which

it may communicate by sending messages. An application manager coordinates the execution of some set

of tasks in a distributed application. It arranges, via communication with the resource manager, to spawn

child workers and submanagers responsible for various subtasks. The application manager thus contains the

interface of the application to the Spawn system. A special root application manager resides on the top-level

user's personal workstation and serves as the user-interface for a distributed computation.

The simplest Spawn applications are black-box applications. A root application manager requests the

execution of a single remote task and provides some fraction of its available funding to pay for it. When

the local resource manager has won a bid on an a�ordable auction, the remote task (consisting of both an

application manager and an application worker) is run. The application worker is a black-box task (such as

a document formatter) that does not directly interact with the Spawn system. Its corresponding application

manager is a simple process that captures any output generated by the worker and sends it back to the root

for display on the user's personal workstation.

More interesting applications may consist of a tree of tasks executing concurrently. In such applications,

a typical worker performs intensive computation and periodically reports partial results to its immediate

manager. This manager combines and processes incoming partial results and sends the aggregate results up

to the next level in the management hierarchy. If partial results can be combined at each level of management,

such reports can be e�ciently combined in a concurrent, decentralized manner. Managers of decomposable

tasks may also choose to spawn additional children to manage subtasks. This process is shown in Figure 1.

10

www.manaraa.com

premiums for purchases of long time slices. A simple strategy, used throughout this paper, is a linear function

relating cost to time slice length. In practice, a bounded range of allowable time slice lengths is used to ensure

that processes execute long enough to amortize start-up overhead, but not so long that a user returning to

his \idle" workstation would be inconvenienced while waiting for a client process to terminate.

The auctions employed by Spawn are sealed-bid, second-price auctions. \Sealed" means that bidding

agents cannot access information about other agents' bids, and \second-price" indicates that the amount

paid by the winning agent is the amount o�ered by the next-highest competitive bidder.

1

This type of

auction provides an incentive for agents to bid the amount that a time slice is actually worth to them, and

has proved very e�ective in human markets. Empirical studies and theoretical analyses of auctions can be

found in the economics literature [9, 11]. A sealed-bid, second-price auction leads to market prices similar

to those which would be created by a familiar �rst-price auction where agents continually try to marginally

outbid the current high bidder.

2

In our system, an auction does not commit to a bidder until the last possible

moment; it accepts the highest bidder's task at the price set by the second-highest bidder when the current

time slice is about to end.

3

3.2.2 Resource Managers

A resource manager process is associated with each auction. The resource manager is responsible for initiat-

ing and monitoring the execution of the application task that purchased the current slice of processor time.

If an application consumes more resources than it has purchased, the resource manager forcibly terminates

it. To avoid terminating an application process before it has completed (e.g., due to an inaccurate processing

time estimate), an application is given a right of �rst refusal before the next time slice is sold. This means

that the currently-executing application is allowed to continue its execution as long as it can pay the going

market price for extension time slices. This capability is provided because terminated processes are not

allowed to be restarted and cannot migrate.

4

It is thus the application's burden to ensure that important

computations are well-funded, or to cope with failure due to aborted computations.

The resource manager also serves as an interface between high-level applications and the rest of the Spawn

system. We feel that a high-level application should not be encumbered with decision-making concerning the

1

More speci�cally, suppose that agents A and B are the current highest and second-highest bidders, respectively, on a

particular auction. If agent C then submits a bid greater than that of A, it will become the new highest bidder. The second-

highest bid will be recorded as that of A if C and A are allowed to compete; otherwise, the second-highest bid will be remain

that of B. The precise distinction between \competitive" and \friendly" agents is explained in the next section.

2

We have experimented with �rst-price \English" auctions and found that they yield approximately the same results as

sealed-bid second-price auctions, but incur a much higher computational cost due to the increased communication overhead.

3

Note that if there is no second-highest bidder, the price is zero; i.e., in the absence of competition, resources are free.

4

These constraints are imposed by the programming environment which we used to implement Spawn. A discussion of

related implementation issues can be found in section 3.5.

9

www.manaraa.com

3 The Spawn System

3.1 Overview

At a very high level of description, Spawn is organized as a market economy composed of interacting buyers

and sellers. The commodities in this economy are computer processing resources, speci�cally slices of CPU

time on various types of computer workstations in a distributed computational environment.

Buyers are users who wish to purchase time in order to perform some computation. Sellers are users

who wish to sell unused, otherwise-wasted processing time on their computer workstations. A concrete

example of a buyer is a scientist who wants to run a large, concurrent Monte-Carlo simulation. A typical

seller is a user who is not actively using his personal workstation. Neither buyers nor sellers need to be

physically co-present with their machines in order to participate in the Spawn economy. A seller executes

an auction process to manage the sale of his workstation's processing resources, and a buyer executes an

application that bids for time on nearby auctions and manages its use of computer processing resources. In

the Spawn economy, monetary funds encapsulate resource rights, and price equates the supply and demand

of processing resources.

3.2 System Processes

The sale of processing resources is handled by a set of system processes that executes on each machine

involved in the Spawn economy.

3.2.1 Auctions

An auction process controls the sale of an idle workstation's resources, and handles messages from application

tasks that want to purchase slices of its time. Each workstation only executes a single application task per

time slice. Thus, a task that has purchased a time slice on a machine is guaranteed exclusive access to that

machine for the duration of the time slice.

An auction continuously accepts bids on the next available slice of time; i.e., a block of time beginning

after the termination of the slice purchased by the currently executing application. A bid consists of a length

of time, a quantity of funds, and a brief task description.

An auction follows a bid-processing strategy de�ned by the seller who initiated it. Auction strategies

are parameterized by the minimum and maximum allowable time slice lengths that can be sold, and a

function that expresses the auction's strategy in terms of slice length, current bids, and other market values.

For example, depending on market conditions, an auction process may decide to give discounts or charge

8

www.manaraa.com

pooling tasks in a distributed system using Enterprise resulted in signi�cant performance improvements over

running the same tasks locally on their home machines.

Like Worms, Enterprise su�ered from the unfortunate protection limitations of early computer worksta-

tions. Aside from implementation-related problems, Enterprise was also limited by a number of fundamental

design decisions. In contrast to Spawn, the system had no provisions for market price information. The ab-

sence of a price mechanism inhibited the
exibility of the system by constraining the criteria by which

contractors and clients could make decisions. For example, clients were incapable of making tradeo�s be-

tween fast, expensive contractors and slow, relatively cheap contractors. Moreover, price information would

have eliminated the need for complicating the system with arti�cial \priorities". Spawn also di�ers from

Enterprise in its support for concurrent applications in a heterogeneous system; Enterprise was limited to

the execution of independent tasks on compatible workstations.

Ferguson, Yemini, and Nikolaou have examined microeconomic algorithms for load balancing in dis-

tributed computer systems [10]. Their scheme, like the approach described by Miller and Drexler, involves

a competitive market for resources based upon a price mechanism. In their system, jobs compete for com-

munication and processing resources by bidding on auctions held by processors. Jobs receive an initial

allocation of money upon entry to the system, which they must use to purchase processing time, and to

pay for communication charges when crossing network links between processors. Processors auction o� CPU

time and communication bandwidth to jobs, trying only to sel�shly maximize their own revenues. Jobs bid

on a�ordable processors based upon a preference relation that is a function of price and service time. When

a processor resource becomes idle, it holds an auction to determine which job will next get that resource.

In the spirit of Adam Smith's classic \invisible hand" argument from economics, it is reasoned that local

optimizations by sel�sh jobs and processors will lead to globally desirable resource allocation. Ferguson

et. al. provide and analyze simulation results, leading them to conclude that their competitive economic

algorithms achieve a globally e�ective allocation of resources that is comparable, and in many cases supe-

rior, to traditional algorithms. However, it is important to note that these results pertain to the problem of

scheduling independent tasks in a network of homogeneous processors. Their sharp focus on the collective

performance of a set of independent processes neglected the e�ects of funding allocation policies. In fact,

the initial allocation of money to jobs was performed arbitrarily in their simulations. Although they found

that aggregate system performance is fairly insensitive to the initial allocation policy, they did not analyze

the e�ects on the performance of individual jobs.

In contrast to the simulations described in [10], Spawn was explicitly designed to support concurrent

applications in a heterogeneous distributed system. With Spawn, we explore the e�ect of various funding

strategies and their impact on performance and fairness of resource distribution.

7

www.manaraa.com

large distributed systems with a changing environment.

The problem of scheduling in distributed computer systems has been a topic of active research for many

years [35]. Most of the work on distributed scheduling has focused either on deterministic mathematical

models or on the formulation of useful heuristics. The mathematical treatments of scheduling, such as those

based in graph theory [3, 21], usually make simplifying assumptions that are not viable in real systems.

Heuristic approaches, more common in practice, involve the estimation and communication of load informa-

tion for making distributed scheduling decisions. A variety of heuristic methods have been studied, including

random, limited exchanges of information [2], techniques from expert systems and rule-based programming

[22], knowledge-based solutions [29], statistical time-series analysis [12], and distributed bidding and market-

like negotiation metaphors [32, 24]. This last class of heuristic algorithms, which are most related to Spawn's

distributed computational economy, are discussed in the following section.

2.3 Computational Markets

Given the similarity between resource allocation problems in distributed computing and economics, it is not

surprising that there has been much discussion of applying markets to computation. An early predecessor

to computational markets was a manual \futures market" used to allocate blocks of time on a single-user

PDP-1 [34]. The most detailed description of possible computational markets has been made by Miller and

Drexler [27, 6]. Their work on processor scheduling is most relevant to Spawn, but is primarily concerned

with the e�cient auctioning of processor time within a single serial computer system. Nevertheless, their

uniprocessor algorithm shares with Spawn the characteristic of linearly increasing bids across a series of

second-price auctions [6].

Enterprise is a decentralizedmarket-like scheduler for load-sharing in distributed computing environments

[24]. Enterprise, similar in many respects to the Contract Net protocol [32, 5], is organized around a

sequence of announcement, bid, and award actions. In the announcement stage, a client broadcasts a

request for bids which includes a description of the task to be run, an estimate of required processing time,

and a numerical task priority. Idle contractors reply with bids containing estimated completion times for

the client's announced task. A client collects bids from responding contractors. After a pre-determined

amount of time, a client evaluates all of the bids it has received and awards its task to the best bidder

(usually the one with the earliest estimated completion time). The Enterprise system protocol allows for

mutual selection of clients and contractors; contractors can decide which clients to serve based upon task

information, and clients can choose among available contractors. In addition to implementing the system on

networked workstations, Malone performed a set of simulations to test the e�ects of various pre-set system

parameters on the performance of the system. The results indicated that over a wide range of parameters,

6

www.manaraa.com

2 Related Work

Since Spawn is a rather unusual experimental system, this section presents an overview of the diverse body

of related work. It is important to keep in mind that Spawn was not intended to optimally solve any

one particular problem. Instead, it is an empirical investigation of the e�cacy and desirability of market

mechanisms in distributed computer networks.

2.1 Exploiting Idle Time

An early experiment in distributed computation was the Worms project [31]. In this system, a worm was

a computation composed of multiple segments, each executing on a di�erent machine. A worm segment

continually searched for idle machines on the network into which it could replicate itself, causing the worm

as a whole to \grow". Although the Worms project highlighted important directions for future research, it

was ultimately rendered impractical. Its primary limitations included a rudimentary control structure and

the lack of provisions for protection and sharing on the early Xerox Alto workstations on which it executed.

Spawn is related to the Worms project in that both share the vision of permitting an expanding computation

to inhabit idle networked workstations. Spawn's mechanisms for resource management and control, however,

are more sophisticated and
exible than the simple strategies employed in Worms.

Another type of system is exempli�ed by the Condor scheduling system [20], a robust system that identi�es

idle workstations and schedules background jobs on them. A key concern in this system is achieving some

measure of fairness when both heavy and casual users compete for idle time [28]. Spawn is similar to Condor

in its goal of harnessing idle time on networked workstations while simultaneously addressing the issue of

fairness. However, Spawn di�ers dramatically from Condor in its capabilities, mechanisms, and assumptions.

One key aspect of Spawn is its support for concurrent applications; an aspect that is absent in systems such

as Condor. This distinction leads to signi�cantly di�erent assumptions. In systems like Condor, the typical

scenario is that there are plenty of idle machines, but they are di�cult to �nd. In Spawn, we assume that

there are users with large concurrent applications capable of utilizing all available CPU time. Thus, the

central concern in Spawn is the fair allocation of \idle" resources among concurrent applications when there

are several applications competing for those resources.

2.2 Computational Resource Management

Improving methods for managing computational resources is a central concern of researchers involved in

the study of resource allocation and scheduling. Conventional schedulers for computer systems rely upon

centralized global controllers to allocate resources among tasks [4, 30], a technique which is not practical for

5

www.manaraa.com

� The �rst application of a microeconomic approach to resource management for concurrent programs.

Spawn introduces several new concepts for abstract, application-level resource management of cooper-

ative processes in concurrent systems. These include the Spawn sponsorship hierarchy mechanism, the

use of continuous funding rates to simplify funding allocation, and a conservation of funding property

across process forks.

� The use of monetary funding units as an abstract form of priority in distributed and heterogeneous

systems. Experiments with Spawn demonstrate that the use of funding as priority can be very e�ective.

� The use of price information to control adaptive expansion and contraction of process trees in concurrent

applications.

� The �rst examination of the price dynamics of a computational economy. The study of price dynamics

is important for understanding the applicability and stability of market mechanisms in computational

systems.

1.4 Roadmap

In the next section, we place Spawn in context by examining relevant work in a number of related areas.

In section three we describe the basic mechanisms underlying the Spawn system. Section four presents and

analyzes the results of several quantitative experiments in which system parameters were varied in order

to assess their in
uence on its overall behavior. These experiments were supplemented with simulations

of Spawn that provide insight into its scaling behavior for large networks. In section �ve we discuss the

limitations of Spawn, and relate a number of lessons that we have learned from our experience with the

system. Finally, we conclude that market-like resource management methods based on a price mechanism

can work e�ectively in a real distributed system, and highlight opportunities for further research.

4

www.manaraa.com

1.2 Spawn Project Overview

In order to understand the behavior of a computational economy, we designed Spawn, a market-based

computational system that runs in a distributed network of heterogeneous high-performance workstations.

By studying a computational economy in actual use, we were able to guide its design and reformulate our

notions of appropriate performance criteria in response to our observations.

At a more practical level, since a signi�cant amount of computer equipment sits idle for large fractions of

each day, Spawn was designed to allow users to tap these otherwise wasted resources. If such an environment

is viewed as a large multiprocessor instead of a collection of independent networked workstations, Spawn

supports both coarse-grain concurrent applications and the simultaneous execution of many unrelated tasks.

We have implemented useful Spawn applications in both of these categories, primarily in the realms of

concurrent Monte-Carlo simulations and remote document formatting.

In this paper, we concentrate on the behavior of large, concurrent Monte-Carlo applications. There are

several reasons for this focus. First, allocating resources in a concurrent application raises a number of

interesting questions concerning interprocess coordination and management that simply don't exist when

executing unrelated tasks. Moreover, although market-like algorithms have been applied to the scheduling of

independent tasks [10, 24], there appears to be no previous work on microeconomic approaches for managing

resources in concurrent applications. Finally, Monte-Carlo simulations represent a signi�cant class of appli-

cations which can make use of large quantities of idle CPU time. Such simulations are frequently used to

understand the behavior of systems with many degrees of freedom, such as matter in various states, ecosys-

tems, and economic models. Although these Monte-Carlo simulations are typically performed on expensive

supercomputers, they can easily be parallelized, making them a natural candidate for distributed computa-

tion. Other potential applications of Spawn include remote compilation, and the concurrent computation of

graphic frames for computer animation.

As will become apparent, Spawn has satis�ed our two-pronged research goal: not only has it allowed us to

harness the idle-time of a computer network, but it has also proven to be a valuable experimental workbench

for studying computational markets and the dynamical behavior of open systems.

1.3 Contributions

The Spawn project has resulted in several original contributions, which are summarized below:

� The �rst implementation of a distributed computational economy. Spawn is a working system that

serves as a proof of concept for a microeconomic approach toward computational resource management.

3

www.manaraa.com

response to local changes require more localized control over resources. We are thus confronted with the

challenge of developing schemes for decentralized resource allocation.

1.1 Motivations

The emergence of large, decentralized systems raises some fundamental questions [13]. Essentially, there is

a need for a general theoretic guide to the behavior of large collections of locally-controlled, asynchronous

and concurrent processes interacting with an unpredictable environment. In particular, this requires under-

standing the relation between the overall behavior of the system and that of its constituents, whose decisions

are based upon local, imperfect, delayed, and con
icting information. These characteristics, which are also

found in social and biological communities, lead us to refer to these collections of interacting processes as

computational ecosystems [14]. This form of computation has also been termed open because it violates the

closed-world assumption of traditional computer science [13].

Given this similarity, it is not surprising that there has been some speculation concerning the e�cacy and

desirability of market mechanisms in distributed computer networks. Since market devices such as auctions

and prices facilitate resource management in human societies, one might expect them to be similarly useful

in computer networks { a proposal which has been elaborated in some detail [27]. For example, a price

mechanism could allow machines with di�erent capabilities to have di�erent values, enabling tasks to
exibly

devote their currency to the resources most important for them.

Despite the intuitive appeal of the economic approach to open computational systems, few empirical or

quantitative results exist to con�rm or deny its suitability. Several di�erences between human economies

and proposed computer systems based on similar principles bring the analogy into question. First, human

decision-making is notoriously di�cult to quantify. In addition, human beings are extraordinarily diverse in

their opinions and methods for making decisions, a fact which can lead to more stability in human economies

than in potentially less-diverse computational networks. Finally, decisions made by computers can take place

in times which are orders of magnitude faster than those of human decisions. Recent work [14, 17] suggests

that the time-scale on which decisions are made has a strong e�ect on the dynamics of the system. These

studies of computational ecosystems also indicate the existence of several other phenomena, such as large-

amplitude oscillations and chaotic behavior, that might have detrimental e�ects on the performance of

computer systems. Even if these issues are resolved, there remain practical questions such as the number

of tasks needed in order to exhibit meaningful market-like behavior, and how to exploit knowledge of this

behavior to e�ciently manage resources.

2

www.manaraa.com

Spawn: A Distributed Computational Economy

Carl A. Waldspurger

�

Tad Hogg Bernardo A. Huberman

Je�rey O. Kephart

y

Scott Stornetta

z

Dynamics of Computation Group

Xerox Palo Alto Research Center

Palo Alto, CA 94304 USA

May 1989

Revised: November 19, 1990; October 21, 1991

Abstract

We have designed and implemented an open, market-based computational system called Spawn. The

Spawn system utilizes idle computational resources in a distributed network of heterogeneous computer

workstations. It supports both coarse-grain concurrent applications and the remote execution of many

independent tasks. Using concurrent Monte-Carlo simulations as prototypical applications, we explore

issues of fairness in resource distribution, currency as a form of priority, price equilibria, the dynamics

of transients, and scaling to large systems. In addition to serving the practical goal of harnessing idle

processor time in a computer network, Spawn has proven to be a valuable experimental workbench for

studying computational markets and their dynamics.

Index Terms: Concurrent systems, distributed systems, dynamic load sharing, microeconomic algo-

rithms, priority mechanisms, resource allocation, scheduling.

1 Introduction

Recent advances in computer technology have led to a proliferation of powerful networked computers that

form large distributed systems. A major di�culty in fully utilizing these systems is managing the complexity

of coordinating many tasks on multiple processors.

Simple centralized allocation of tasks becomes increasingly di�cult as larger parallel machines and dis-

tributed networks are developed. Since data is distributed and rapidly changing, a central controller cannot

access all of the information needed to e�ectively plan detailed behavior. Instead, reliability and rapid

�

Author's present address: MIT Laboratory for Computer Science, 545 Technology Square, Cambridge MA 02139

y

Author's present address: IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

z

Author's present address: Bellcore, 445 South Street, Morristown, NJ 07960

1

